

 _
+-/ \-+
| (o) |
+-----+

Giving Linux a Camera
Stack: libcamera's 3
Years Journey and

Exciting Future

Embedded Linux Conference 2021
Seattle, 2021-09-28

Laurent Pinchart
laurent.pinchart@ideasonboard.com

Hello everybody, and welcome to this presentation
about libcamera. For those of you who are lucky
enough to join us live from Seattle today, thank you
for waking up early. This is the first slot of the day, so
I know how difficult it can be.

My name is Laurent Pinchart. I’m the chief architect
and project manager of libcamera. Today I’m going to
take you on libcamera’s fabulous journey.

So let’s dive in the subject.

Once
Upon A

Time

Before we actually start talking about libcamera, I
think it’s important to understand the context and
where camera support in Linux camera from.

In the beginning...

Panasonic MC20 + Pinnacle Miro DC10

What you’re seeing on the screen is my very first
webcam. It’s made of a VHS camcorder connected
through a composite video cable to a PCI capture
card. It was bulky and required an actual tape inside
the camcorder to operate, but it did the job. After
months of reverse engineering it even worked on
Linux. That was my idea of well spent free time in
those days.

... were simple devices

Logitech Quickcam Express

After a brief period of crazy ideas such as connecting
cameras through the printer parallel port (which Linux
actually supported), at the end of the 20th century the
world moved to USB-connected cameras. For all
purpose but nostalgia it was a good idea.

A / +-----------------+
P | | capture |
I | | /dev/video0 |
 \ +-----------------+

V4L2

A monolithic API for
TV grabbers and

webcams alike.

Enables development of
universal applications.

High-level controls,
the TV signal
provides a good
image already.

What did all those devices have in common ? A large portion of
them had Linux drivers – mostly developed through reverse-
engineering –, and all those drivers implemented the Video4Linux
API.

In the rest of this presentation I will use the words Video4Linux,
V4L and V4L2 interchangeably, the old V4L1 API is only of interest
for historians.

Video4Linux is a broad API with lots of features to accommodate
different kinds of video capture devices, from TV grabbers to
webcams. It is fairly monolithic, in the sense that it tries to apply
the same model to all those devices. As a result, an application
that supports V4L2 will likely work with TV grabbers and webcams
alike, at least for their basic features.

V4L is also a fairly high-level API because it maps directly to the
features of the devices it supports. My camcorder handled the gory
details of auto-exposure and auto-white balance, and USB
webcams followed the same model. V4L didn’t have to care about
what happened under the hood inside the cameras.

Logitech Quickcam Express For Notebooks

Early UVC Camera

What happened next ? Fast forward 5 years, the
industry standardized on a common USB protocol for
webcams (2003), called the USB Video Class (UVC).

From: Laurent Pinchart <laurent.pinchart@skynet.be>
To: linux-usb@vger.kernel.org, video4linux-list@redhat.com
Subject: [PATCH] USB Video Class driver
Date: Wed, 23 Apr 2008 01:37:11 +0200

Hi everybody,

after more than two years of development the Linux UVC driver is mostly ready
to jump the fence and get included in the mainline kernel.

This driver aims to support video input devices compliant with the USB Video
Class specification. This means lots of currently manufactured webcams, and
probably most of the future ones.

I plan to submit the driver through the V4L subsystem, but I'd like it to get
a proper review on both the linux-usb and video4linux mailing lists first.

Given the size of the patch I'm open to any suggestion that would make the
review process easier.

Laurent Pinchart (my humble 25 August 1991 moment)

USB Video Class

It took two years to develop a Linux driver for it. This
was my humble first real steps in the Linux kernel
world, and got merged in 2008.

As virtually all new webcams were expected to
implement the USB Video Class, I thought camera
support in Linux was solved for good. The future
proved me sooo wrong.

Palm Treo 650 (PXA270, 0.3MP Camera)

Embedded Cameras

What did I miss ? First of all, not all cameras were
connected over USB. Linux was gaining fast adoption
in the embedded world, and there the situation was
different.

From: Guennadi Liakhovetski <g.liakhovetski@pengutronix.de>
To: video4linux-list@redhat.com
Subject: [PATCH 1/6] soc_camera V4L2 driver for directly-connected
 SoC-based cameras
Date: Tue, 5 Feb 2008 18:46:13 +0100 (CET)

This driver provides an interface between platform-specific camera
busses and camera devices. It should be used if the camera is connected
not over a "proper" bus like PCI or USB, but over a special bus, like,
for example, the Quick Capture interface on PXA270 SoCs. Later it should
also be used for i.MX31 SoCs from Freescale. It can handle multiple
cameras and / or multiple busses, which can be used, e.g., in
stereo-vision applications.

Signed-off-by: Guennadi Liakhovetski <g.liakhovetski@pengutronix.de>

V4L2 Goes Embedded

In embedded devices, cameras are made of an
image sensor that outputs data on a dedicated
hardware interface, such as MIPI CSI-2 in today’s
devices. The SoC, the processor running Linux,
integrates a receiver compatible with that interface,
which then transfers images to memory using DMA.

Unlike in webcams, both the camera sensor and the
receiver are directly controlled by Linux.

What is a
camera?

What implications does this have ? To answer that
question, we need to understand what a camera
actually is.

CMOS Sensor

At the core of a camera, as you likely all expect, is an
imaging sensor. This is a device that converts light to
digital values.

CMOS Sensor

micro lens

photodiode

pixel

micro lens

photodiode

micro lens

photodiode

It is made of tiny light-sensitive photodiodes with the
electronics required to convert the charge into a
voltage. Each of them has a micro-lens to gather as
much light as possible into the diode. Those are what
we call pixels.

CMOS Sensor

Photon to electron
conversion

Charge to voltage
conversion

Analogue
amplifier
(gain)

Analogue
to digital
converter

The pixels are assembled into an array, with rows
and columns, and additional electronics to route the
voltage of each pixel one after the other to an
analogue amplifier and an analogue to digital
converter.

The sensor outputs a digital value for each pixel
proportional to the amount of light that has reached
the photodiode. This is our first trouble: the diodes
are sensitive to an amount of light, so they produce a
greyscale image.

How do we get colours ?

Colour Filter Array

Bayer Filter

source: https://en.wikipedia.org/wiki/Bayer_filter

Colours are related to physical properties of the light
and its spectral contents, but it’s important to realize
here that the concept of colour is deeply tied to the
human eye and its perception of light. Without going
into details, let’s just remember that colour
processing in cameras is mostly about outputting
images that appear as realistic as possible to the
human eye.

What most camera sensors do is simply put tiny
colour filters in front of each pixels, with colours
corresponding to the sensitivity of the human eye to
red, green and blue. The most common arrangement
of such filters groups them in cells of 2 by 2 pixels
with one red, one blue and two green filters, because
the eye is more sensitive to green than red or blue.
This colour filter array pattern is called Bayer.

Original 120x80 Bayer image

CFA Interpolation
source: https://en.wikipedia.org/wiki/Bayer_filter

Let’s look at the impact this has on the image. Image
1 shows a sample scene that we then capture with a
120x80 pixels Bayer sensor.

Image 2 shows the value of all captured pixels. As
you can see from the red flower, we have a checker
pattern of light and dark pixels. The light pixels
correspond to the ones with a red filter, which lets the
red light through, while the dark pixels correspond to
the green and blue filters, which block most of the red
light.

Original 120x80 Bayer image

Colour-coded

CFA Interpolation
source: https://en.wikipedia.org/wiki/Bayer_filter

Image 3 shows the same image, but with each pixel
colourised with the colour of the corresponding filter.
We can see that colour information is present, but
each pixel misses two out of the three colour
channels. This leads to the typical checker pattern of
colourised Bayer images.

Original 120x80 Bayer image

Colour-coded Colour interpolation

CFA Interpolation
source: https://en.wikipedia.org/wiki/Bayer_filter

Image 4 is obtained by interpolating the missing
colour components using the values of neighbouring
pixels. For instance, a red pixel is surrounded by 4
green pixels, its green value can be estimated by
taking the average of those 4 green neighbours. In
practice, to obtain a good image quality, more
complex interpolation is required, taking into account
more neighbours with more complex mathematical
operations.

It would be easy if it stopped there.

Lens Shading

There is more processing that needs to be applied to
the image to achieve an acceptable quality. This is
caused in part by imperfections in the optics and
camera sensor.

For instance, as shown here, the lens lets less light
through on the periphery than in the centre, causing
an undesired vignetting effect.

There are plenty of other issues. The sensor may
have defective pixels that need to be hidden. The
total absence of light isn’t rendered black due to
leakage currents in the photodiode. Noise affects the
image at all stages from the photodiode to the
analogue to digital conversion. The list goes on.

source: https://karaimer.github.io/camera-pipeline/
Camera Pipeline

Images thus need to go through a complex camera
pipeline, way too expensive to implement in software in
real-time. Cameras need hardware assistance, and this is
provided by specialized devices called Image Signal
Processors (ISP).

Auto Algorithms (a.k.a. 3A)

And if you thought that was complex enough, it’s not all.

The luminance of the scene, in front of the camera, typically varies
constantly. This requires adjusting the integration time and gain of
the sensor accordingly, to produce an image this is neither
underexposed nor overexposed. The same is true for the white
balance, which requires adjusting colour gains based on the light of
the scene, or for the focus as people can move in front of the
camera.

Parameters that control the lens, the sensor and the ISP need to
be computed in real time, based on an analysis of the captured
images. This is again computationally-intensive, but fortunately the
ISP comes to the rescue by computing statistics such has
histograms. Based on those statistics, algorithms compute the
processing parameters for the next frame, and apply them to the
device. The same process repeats for every frame.

Those algorithms are often referred to as 3A for auto-exposure,
auto-white balance and auto-focus, but can include more
processing. All of this is key to getting the final quality of the image.

IQ Tuning
source: https://www.flickr.com/photos/davedugdale/15043975135

Last but not least, the algorithms need to be calibrated and tuned
for every combination of a camera sensor and optics. This adds
even more complexity to the development process.

Back To
V4L2

Now, do we really have to implement all this for
embedded cameras ?

Smart Sensor (a.k.a. YUV Sensor)

Fortunately for us, there are sensors that embed an
ISP and a microcontroller to run the algorithms. They
are called smart sensors, or YUV sensors because
they output processed images in YUV format as
opposed to raw unprocessed Bayer images.

Logitech Quickcam Express For Notebooks

So Small, Yet So Smart

On a side note, USB webcams often use smart
sensors, and when they don’t, they integrate a
separate ISP in the camera. The integrated webcams
in laptops are also USB devices, that’s why Linux
didn’t have to care so far.

c s / +-----------------+
a e | | |
m n | |-----------------|
e s | | YUV sensor |
r o | |-----------------|
a r | | 0 |
 \ +-----------------+
 |
 v
 / +-----------------+
 | | 0 |
 | |-----------------|
S i | | CSI-2 |
o n | |-----------------|
C t | | 1 |
 e | +-----------------+
c r | |
a f | v
m a | +-----------------+
e c | | 0 |
r e | |-----------------|
a | | scaler |
 | |-----------------|
 | | 1 |
 \ +-----------------+
 |
 v
A / +-----------------+
P | | capture |
I | | /dev/video0 |
 \ +-----------------+

In the beginning were
simple pipelines...

V4L2 Goes Embedded

The day is saved, we can use our smart sensor
connected to the SoC. There is a bit more to deal
with than with a USB webcam, as the camera
receiver in the SoC may have additional features,
such as the ability to scale. Still, the complexity of the
camera pipeline is very limited.

 +---------------+
 | |
 | Camera |
 | Application |
 | |
 +---------------+
 ^
 |
 V |
 4 |
 L | +----+
 2 | | |
 | +----+
 | +----+
 | | |
 | +----+
 | +----+
 \-->| |
 +----+

… and they were
simple to control,
with a single API.

V4L2 Goes Embedded

And it can all be exposed through V4L2, which
supports scaling already. Existing V4L2 applications
can keep using the same API, unaware that the SoC
has a scaler separate from the camera sensor.
Everything works like if the embedded camera was a
webcam.

Then the world became complex

Then trouble happened. This is the Nokia N900, one
of the first Linux phones from a large manufacturer. It
is special because it marks the beginning of the
libcamera journey.

 _
+-/ \-+
| (o) |
+-----+

The
libcamera
 Journey

You will ask me, how can a phone released in 2009
mark the beginning of libcamera, which was
announced nearly 10 years later, in 2018 ?

OMAP3 Camera in Nokia N900

 +-----------------+ +-----------------+ +-----------------+
 | | | | | | | |
 |-----------------| +-----------------+ |-----------------| |-----------------|
 | vm6558 | | CCP2 input | | jt8ev1 2-0037 | | as3645a 2-0030 |
 |/dev/v4l-subdev11| | /dev/video0 | |/dev/v4l-subdev8 | |/dev/v4l-subdev8 |
 |-----------------| +-----------------+ |-----------------| |-----------------|
 | 0 | | | 0 | | |
 +-----------------+ | +-----------------+ +-----------------+
 \----------------\ | |
 v v v
 +-----------------+ +-----------------+
 | 0 | | 0 |
 |-----------------| |-----------------|
 | CCP2 | | CSI2a |
 |/dev/v4l-subdev0 | |/dev/v4l-subdev1 |
 |-----------------| |-----------------|
 | 1 | | 1 |
 +-----------------+ +-----------------+
 | /---------------/|
 v v v
 +-----------------+ +-----------------+
 | 0 | | CSI2a output |
 +-----------------+ |-----------------| | /dev/video1 |
 | resizer input | | CCDC | +-----------------+
 | /dev/video5 | |/dev/v4l-subdev2 | +-----------------+
 +-----------------+ |-----------------| | preview input |
 | | 1 | 2 | | /dev/video3 |
 | +-----------------+ +-----------------+
 | /----------------/----------------/ /--/ \----------\ |
 v v | v v v
 +-----------------+ | +-----------------+ +-----------------+ +---+ Sensors & flash
 | 0 |<. v | 0 | | 0 | +---+ OMAP3 ISP
 |-----------------| | +----------------+ |-----------------| |-----------------| +---+ API
 | resizer | | | CCDC output | | AEWB | | preview |
 |/dev/v4l-subdev4 | | | /dev/video2 | |/dev/v4l-subdev4 | |/dev/v4l-subdev3 |
 |-----------------| | +----------------+ |-----------------| |-----------------|
 | 1 | | | | | 1 |
 +-----------------+ | +-----------------+ +-----------------+
 | \---/ |
 v v

Then the world
became complex...

The N900 is based on an OMAP3 SoC from Texas
Instrument. Its camera architecture uses raw Bayer
sensors, connected to an ISP inside the OMAP3.
This marks the turning point of Linux having to care
about all the complexity of image processing.

Back then, I was working with the Nokia camera
kernel team on drivers for the OMAP3 ISP. V4L2
wasn’t ready for this use case, and we designed and
developed a new API called Media Controller, along
with many V4L2 extensions, to expose the full
features of the ISP to userspace.

 +-----------------+
 | |
 | Camera |
 | Application |
 | |
 +-----------------+
 ^ ^ ^ ^ ^
 | |M | | |
 /-/ |C \-\ \ \-\
 | | | |s |
 v v |V |u v
+----+ +----+ |4 |b +----+
| | | | |L |d | |
+----+ +----+ |2 |e +----+
 +----+ | |v +----+
 | |<-/ / | |
 +----+ L +----+
+----+ +----+ +----+
| | | | | |
+----+ +----+ +----+
+----+ +----+ +----+
| | | | | |
+----+ +----+ +----+

… and application
developers were left
suffering.

This is all nice for the kernel, but not for applications.
They had to program sensor and ISP parameters,
capture raw frames, pass the raw frames to the ISP,
capture processed frames and statistics, and
implement the image processing algorithms. All this
is also device-dependent, as different ISPs behave
differently and algorithms can’t be generalized. The
idea of portable V4L2 applications that would work
with different cameras got completely shattered at
that point.

Nokia had the resources to develop a custom camera
stack in userspace (which was partly proprietary) and
custom applications. This was beyond the reach of
most developers, whether hobbyists or working for
small to medium-size companies. The complexity
was just not manageable.

 +-----------------+
 | Camera |
 | Application |
 +-----------------+
 | libv4l + plugin |
 +-----------------+
 ^ ^ ^ ^ ^
 | |M | | |
 /-/ |C \-\ \ \-\
 | | | |s |
 v v |V |u v
+----+ +----+ |4 |b +----+
| | | | |L |d | |
+----+ +----+ |2 |e +----+
 +----+ | |v +----+
 | |<-/ / | |
 +----+ L +----+
+----+ +----+ +----+
| | | | | |
+----+ +----+ +----+
+----+ +----+ +----+
| | | | | |
+----+ +----+ +----+

Solutions were
proposed...

We had envisioned solutions to this problem, with
designs based on platform-specific plugins for libv4l,
the V4L2 wrapper library.

… but never
implemented.

Unfortunately, on February 11th, 2011, Nokia decided
to cancel its line of Linux-based mobile phones and
switch to Windows Phone. Development of
userspace solutions stopped.

The world turned
dark...

From 2011, Linux was without an embedded camera
stack. Development continued on the kernel side, but
nobody could or would commit enough resources to
fix the situation in userspace.

Acer Chromebook Tab 10

Meanwhile, new devices got developed with raw
camera sensors and an ISP in the SoC. This
architecture was spreading from phones to ARM-
based tablets...

Dell Latitude 7285

… and from tablets to laptops, even on Intel-based devices. This
particular laptop uses a raw sensor with an Intel Kaby Lake SoC.

Why did vendors decide to use raw sensors, and not smart
sensors or USB webcams integrated in the device case ? Was it
pure masochism ? It turns out there are multiple reasons. They are
related to cost, size (USB webcam modules can be quite thick), but
most importantly to image quality and features. With raw sensors,
no silicon space is used to implement an ISP, and we can achieve
larger pixels sizes and resolutions. With a separate controllable
ISP, vendors can implement more advanced image algorithms. A
couple of very simple examples are focus assistance based on
face detection, or advanced HDR processing. Many more complex
use cases exist.

As those features can be fairly advanced, they are often
considered by vendors as a key differentiating factor that needs to
be covered by the uttermost secrecy. This makes embedded
cameras and free software unlikely friends.

Regardless of the reason, the trend was clear, and was here to
stay. The problem had to be addressed urgently.

...then hope came
back.

At the end of 2018, after contacts with the industry
over the summer, we announced the libcamera
project.

 a c / +-------------+ +-------------+ +-------------+ +-------------+
 p a | | Native | | Framework | | Native | | Android |
 p t | | V4L2 | | Application | | libcamera | | Camera |
 l i | | Application | | (gstreamer) | | Application | | Framework |
 i o \ +-------------+ +-------------+ +-------------+ +-------------+
 n ^ ^ ^ ^
 | | | |
 l a | | | |
 i d v v | v
 b a / +-------------+ +-------------+ | +-------------+
 c p | | V4L2 | | Camera | | | Android |
 a t | | Compat. | | Framework | | | Camera |
 m a | | | | (gstreamer) | | | HAL |
 e t \ +-------------+ +-------------+ | +-------------+
 r i ^ ^ | ^
 a o | | | |
 n | | ,................... |
 / | | ! Language ! |
 | | | ! Bindings ! |
 l f | | | ! (e.g. Python) ! |
 i r | | | ! (optional) ! |
 b a | | | `..................’ |
 c m | | | | |
 a e | | | | |
 m w | v v v v
 e o | +--+
 r r | | |
 a k | | libcamera |
 | | |
 \ +--+
 ^ ^ ^
 Userspace | | |
---------------------------|----------------|----------------|----------------
 Kernel | | |
 v v v
 +-----------+ +-----------+ +-----------+
 | Media |<-->| Video |<-->| V4L2 |
 | Device | | Device | | Subdev |
 +-----------+ +-----------+ +-----------+

Camera Stack

libcamera
provides a
complete
userspace
camera stack.

The ‘Mesa’ of
the camera

world.

The goals were ambitious. libcamera was to provide
a complete userspace camera stack, with a new
native API, and a feature set that would at least
match the capabilities of the Android camera API.
This was way beyond what V4L2 supports natively.

And of course it had to be free software.

While our initial team was actually coming from
kernel development, we wanted to focus our attention
on the userspace side as much as possible.
libcamera thus uses existing V4L2 and MC kernel
drivers, it doesn’t come with a new kernel API.

 +------------------------+ +---------+
 | _ | | _ | | | | |
 | +-/ \-+ | | +-/ \-+ |
 | | (o) | | | | (o) | |
 | +-----+ | | +-----+ |
 +------------------------+ +---------+
 ^ ^ ^
 Userspace | | |
------------|--------------|-------------|-------
 Kernel | | |
 v v v
 +---------+ +---------+ +---------+
 |#########|<-->|#########| |#########|
 |#########| |#########| |#########|
 +---------+ +---------+ +---------+

Camera Devices & Enumeration

libcamera
enumerates

cameras...

libcamera had to handle camera enumeration and
support multiple cameras concurrently, ...

 +-----+
 _ ---> | <>< |
 +-/ \-+ / +-----+
 | (o) | ---/
 +-----+ \ +----------+
 \ | ,-, |
 ---> | ('_)< |
 | `-` |
 +----------+

Streams

It supports multiple
concurrent streams

for the same
camera...

… and also support multiple concurrent streams per
camera, to capture the same frame in different
resolutions and formats. This way, an application can
for instance obtain a stream with the native screen
resolution to display locally, and a second stream
with a different resolution for video recording or
streaming.

 _ +----------+ +----------+
 +-/ \-+ | ,-, | | ,-, |
 | (o) | --> | ('_)< | --> | ('_)< | --> ...
 +-----+ | `-` | | `-` |
 +----------+ +----------+

Per-Frame Controls

… and per-frame
controls.

libcamera would support per-frame controls. It would
guarantee to applications that control parameters get
applied precisely to the requested frame.

 +---+ +-----+ +-----+
 |(o)| ---> | ISP | --+--> | <>< | --->
 +---+ +-----+ | +-----+
 ^ |
 | | +-------+
 | \-> | Stats |
 | +-------+
 +-----+ |
 | IPA | <---------/
 +-----+

Image Processing Algorithms (3A)

Image Processing
Algorithm are loaded
as external modules.

Of course, as libcamera had to control ISPs, it would
need to implement image processing algorithms. We
have seen how those algorithms are some of the
most protected vendor IP, so we decided to isolate
them in plugins named Image Processing Algorithm
modules, or IPA modules.

This architecture allowed vendors to provide closed-
source implementations of algorithms that can
coexist with open-source implementations, even for
the same platform. We will see later how this was
done without compromising on the ability to use
cameras with free software only.

 +-----------+
 | V4L2 App. |
 +-----------+

 +-----------+
 | |
 | V4L2 |
 | API |
 | |
 | |
 | |
 | |
 +-----------+

 +--------------------------------+
 | libcamera |

Adaptation

Adaptation layers
offer backward

compatibility with
existing APIs...

Even though libcamera offers a native API, right from
the beginning we considered the need to be
backward-compatible with existing APIs to facilitate
libcamera’s adoption. In particular, we wanted
libcamera to be usable with most V4L2 applications
without having to even recompile them. We will also
see later how that was achieved.

 +-----------+ +-----------+
 | V4L2 App. | | Android |
 +-----------+ +-----------+

 +-----------+ +-----------+
 | | | ___/ | | |
 | V4L2 | | /. .\ |
 | API | | ----- |
 | | | !| Cam.|! |
 | | | !| HAL |! |
 | | | ----- |
 | | | | | |
 +-----------+ +-----------+

 +--------------------------------+
 | libcamera |

Adaptation

… and integrate
libcamera with

other operating
systems.

We also considered as a main goal support for
Android and Chrome OS, which are both based on
the same Android camera API.

For those who are not familiar with camera
implementation on Android, Android defines an API
for camera provider modules named the camera
Hardware Abstraction Layer, or HAL. They require
device vendors to provide a camera HAL
implementation, and Android builds the camera
service on top. With a single implementation of the
Android camera HAL based on libcamera, we can
support both operating systems, Android and Chrome
OS.

 _
+-/ \-+
| (o) |
+-----+

The
libcamera
 Journey

So at end of 2018, we had a goal, an architecture,
and plenty of motivation. The adventure could begin.

Our Initial Targets

Intel IPU3 (Kaby Lake)
on HP Chromebook x2 USB Video Class (UVC)

We started development by targetting two very
different devices initially. Our main goal was the ISP
found in Intel Kaby Lake SoCs, named IPU3. We
picked a Chromebook device as a development
platform, as it had an open-source firmware
implementation, kernel drivers, and a supportive
team at Google. We will see later why the open
firmware is important.

The second targetted device was any plain old UVC-
compatible webcam. While webcams don’t benefit as
much from libcamera as ISPs, we wanted to show
that the camera stack could also perfectly support
what most Linux users are using today.

Test, Test, Test

From the very beginning we decided that tests, and in
particular unit tests, were crucial to the success of the
project. I can’t emphasize more strongly how that
decision turned out to be right. The project would
have collapsed from regressions without that.

To support unit testing of the libcamera core without
the need for a particular hardware platform, the first
device we actually supported was the “virtual media
controller” device (vimc), before IPU3 or UVC. vimc is
a kernel module that emulates a camera sensor and
camera receiver without a real hardware device. It
has been extremely useful for testing.

And ARM Too (RK3399)

Acer Chromebook Tab 10 ROCK PI 4

Shortly afterwards we added one final device to the
set, with the ISP found in the Rockchip RK3399. Its
architecture is quite different compared to the IPU3,
and we wanted to test the libcamera design with
different device architectures.

Our initial development device was also a
Chromebook, but the same code works on other
RK3399 machines, such as the ROCK PI 4 board.

At that point, something unexpected happened.

Raspberry Pi 4 + IMX477

Among the platforms we hadn’t considered for
libcamera was Raspberry Pi. They released their first
camera module in 2013, with a camera stack
implemented in a closed-source firmware, out of
reach of Linux, and thus, of libcamera.

The Raspberry Pi user base wanted better access to
the internals of the camera system, and Raspberry Pi
listened. They had the code to control the camera
pipeline, a complete implementation of image
processing algorithms, and a will to open-source it.
What was missing was a standard camera stack for
Linux that could host those components.

An Unexpected Friend

And they got in touch towards the end of 2019. We worked
together for about 6 months (which to be fair was mostly
them doing the work, with our guidance), and in May 2020
they announced the new camera stack based on libcamera.

The code they released was, as far as I know, the world’s
first open-source production-quality implementation of
image processing algorithms for an ISP. Along with it came
a tuning tool, and very detailed documentation.

This made the Raspberry Pi a great platform and
playground for image algorithms development. It was a
world’s first, and even if nobody noticed, we knew it was a
major milestone. libcamera had its first experience of
collaboration, and its first real users.

Microsoft Surface Go 2

The second unexpected encounter was, indirectly, due to
Microsoft.

We knew about the Windows-based laptops with an IPU3,
and we knew they would be challenging to support. The
Linux kernel needs to know what camera sensors are
present in the system, how they are connected, and it
needs to control their power to turn them on and off. On x86
machines, this is normally handled by the ACPI firmware,
which describes the hardware, and controls the power
automatically. However, on those machines, unlike on
Chromebooks, the ACPI description is very badly designed,
is missing critical information, and requires drivers to
implement power management manually.

Without support from the device manufacturer, without
access to the schematics, without firmware or Windows
driver source code, there was little that could be done.

github.com/linux-surface

“I found libcamera based on
this bug report, it seems to
have the required userspace
code to have ipu3 working
on 5.0.”

(archseer)

That’s where the linux-surface community comes into
play. They are a set of users-turned-developers who
had different Microsoft Surface machines and teamed
together to try and get Linux up and running on them.

Needless to say, they were not pleased with lack of
camera support. They studied the camera ACPI
description and went to reverse engineer the
firmware to obtain the missing information. We
helped them with that task, which ended up requiring
significant effort. After great work on the kernel side
from some of the community members, and nearly
being driven crazy by ACPI atrocities, they managed
to get the sensors detected. libcamera was ready to
capture the first images from those devices.

linux-surface

Initial support status with work
on kernel drivers from djrscally,
kitakar5525 and qzed

This is how they looked like. You see, at that time,
libcamera had support for the IPU3, but no
corresponding image processing algorithms. That is
how bad it gets without them.

Still, it was a break-through achievement, and I
wouldn’t have bet on 6 months earlier. Far from being
discouraged by the appalling quality, users tried to
hack around to improve it. Some of them even got
poetic.

Artwork

A user noticed that pictures had a tendency to be
purple in low-light conditions and green in bright light
conditions. They took a picture through the window
on a bright day, and named it “The sky after rain with
leaf”. The story doesn’t tell if it was later sold as an
non-fungible token.

Art is great, but it doesn’t make for a great webcam.
So we decided to fix this, and one of our developers
spent a few months implementing initial algorithms
for the IPU3.

libcamera Involvement

This is what he achieved. As you can see, there’s lots
of room for improvement, for instance to address lens
shading, but the result starts looking like a camera.

At that point, more than two years of work had gone
into libcamera. This underlines my earlier point:
without a userspace camera framework, the
development effort to write a camera application is
simply not realistic.

Budget Expectations

Still, this reality isn’t widely known among Linux
users. This screenshot shows a bounty for the
camera support in Linux on Microsoft Surface
machines. $810 to cover all the kernel and userspace
development is a bit of an effort underestimation.

Of course lots of free software gets developed by
hobbyists in their free time, and the community has
great talents (as seen by the amazing GPU reverse
engineering projects). Nonetheless, with the number
of different ISPs on the market today, and new ones
being developed all the time, solving the issue of
camera support on Linux will require involving
vendors.

 _
+-/ \-+
| (o) |
+-----+

libcamera
Today

The journey leads us to today. What have we
achieved so far with libcamera, and what are we busy
working on ?

V4L2VideoDevice V4L2SubDevice

V4L2Format V4L2BufferCache

MediaEntityMediaDevice

V4L2 & MC

Thread EventDispatcher

Message EventNotifier

TimerSignal

Events & I/O

Request

FrameBuffer

FrameMetaData

Requests

Control

ControlValue

ControlList

Controls

CameraConfiguration PixelFormat

StreamConfiguration ImageFormats

GeometryStreamRole

Configuration

Camera
Sensor

Camera
Sensor

Info

Camera
Sensor
Factory

Camera Sensor

IPAModule

IPAProxy

IPAManager

IPAInterface

IPA & IPC

IPC

PipelineHandler

Stream

Camera

CameraData

Stream

ACMECamera

Stream

Camera

CameraData

Stream

ACMECamera

ACMEPipelineHandler

DeviceEnumeratorCameraManager

Camera Manager

CameraDeviceCameraHALManager

Android Camera HAL

... ...

ACME Algorithms
–

Proprietary

IPA Module

...

IPC

Serializer

IPA & IPC

IPA Proxy Worker - Sandboxed

...

Core

Pipeline

Adaptation

Kernel

Hardware

ov….

imx….

xgs….

mipi-ccs

Camera Sensor Drivers ACME Camera Drivers

….

….

….

….

….

….

….

….

The Camera Stack

...GstLibcameraSrc

GStreamer Source

...

V4L2 Compat

I think it’s fair to say that we have managed to create
a userspace camera stack for Linux.

V4L2VideoDevice V4L2SubDevice

V4L2Format V4L2BufferCache

MediaEntityMediaDevice

V4L2 & MC

Thread EventDispatcher

Message EventNotifier

TimerSignal

Events & I/O

Request

FrameBuffer

FrameMetaData

Requests

Control

ControlValue

ControlList

Controls

CameraConfiguration PixelFormat

StreamConfiguration ImageFormats

GeometryStreamRole

Configuration

Camera
Sensor

Camera
Sensor

Info

Camera
Sensor
Factory

Camera Sensor

IPAModule

IPAProxy

IPAManager

IPAInterface

IPA & IPC

IPC

PipelineHandler

Stream

Camera

CameraData

Stream

ACMECamera

Stream

Camera

CameraData

Stream

ACMECamera

ACMEPipelineHandler

DeviceEnumeratorCameraManager

Camera Manager

CameraDeviceCameraHALManager

Android Camera HAL

... ...

ACME Algorithms
–

Proprietary

IPA Module

...

IPC

Serializer

IPA & IPC

IPA Proxy Worker - Sandboxed

...

Core

Pipeline

Adaptation

Kernel

Hardware

ov….

imx….

xgs….

mipi-ccs

Camera Sensor Drivers ACME Camera Drivers

….

….

….

….

….

….

….

….

The Camera Manager

...GstLibcameraSrc

GStreamer Source

...

V4L2 Compat

As the central piece of the stack, we have a camera
manager.

The Camera Manager

 +---------------------------------------+
 | _ _ |
 | +-/ \-+ +-/ \-+ |
 | | (o) | | (o) | |
 | +-----+ +-----+ |
 +---------------------------------------+

 +-----+ +-----+ +-----+
 |#####| |#####| |#####|
 +-----+ +-----+ +-----+

The Camera Manager
enumerates media

devices and instantiates
corresponding pipeline

handlers.

It can enumerate all media devices in the system,
and support hotplug to notify applications of camera
addition and removal. The camera manager pairs
media devices with device-specific backends that we
call pipeline handlers.

The Camera Manager

 +---------------------------------------+
 | _ _ _ |
 | +-/ \-+ +-/ \-+ +-/ \-+ |
 | | (o) | | (o) | | (o) | |
 | +-----+ +-----+ +-----+ |
 +---------------------------------------+

 +-----+ +-----+ +-----+ +-----+
 |#####| |#####| |#####| |#####|
 +-----+ +-----+ +-----+ +-----+

Each pipeline
handlers create

and register one
or more cameras.

The pipeline handlers in turn create one or more
cameras and register them with the camera manager.
From that point, the cameras are visible to
applications and ready to be used.

So how does it work behind the scenes ?

V4L2VideoDevice V4L2SubDevice

V4L2Format V4L2BufferCache

MediaEntityMediaDevice

V4L2 & MC

Thread EventDispatcher

Message EventNotifier

TimerSignal

Events & I/O

Request

FrameBuffer

FrameMetaData

Requests

Control

ControlValue

ControlList

Controls

CameraConfiguration PixelFormat

StreamConfiguration ImageFormats

GeometryStreamRole

Configuration

Camera
Sensor

Camera
Sensor

Info

Camera
Sensor
Factory

Camera Sensor

IPAModule

IPAProxy

IPAManager

IPAInterface

IPA & IPC

IPC

PipelineHandler

Stream

Camera

CameraData

Stream

ACMECamera

Stream

Camera

CameraData

Stream

ACMECamera

ACMEPipelineHandler

DeviceEnumeratorCameraManager

Camera Manager

CameraDeviceCameraHALManager

Android Camera HAL

... ...

ACME Algorithms
–

Proprietary

IPA Module

...

IPC

Serializer

IPA & IPC

IPA Proxy Worker - Sandboxed

...

Core

Pipeline

Adaptation

Kernel

Hardware

ov….

imx….

xgs….

mipi-ccs

Camera Sensor Drivers ACME Camera Drivers

….

….

….

….

….

….

….

….

The Pipeline

...GstLibcameraSrc

GStreamer Source

...

V4L2 Compat

As we’ve seen before, a camera needs a complex
pipeline of operations. To support this, the device-
specific backend is split in two parts.

The Pipeline Handler

 +---+ +-----+
 |(o)| ---> | CSI | ----> <|MEM|>
 +---+ +-----+ |
 v
 +-----------+
<|MEM|> <---(<><)--- | ISP +--+ |
<|MEM|> <---(<><)--- | +--+ |
 | +--+ +--+ |
<|MEM|> <---(STATS)--- | +--+ +--+ |
 +-----------+

The pipeline handler
interfaces with all kernel

devices. It abstracts
them and exposes video
streams to upper layers.

First we have the pipeline handler. This is the code
that is responsible for all interactions with kernel
devices. It configures data routing inside the devices,
manages internal memory buffers, handles image
capture, … Overall it abstracts the details of device
operation and exposes video streams to applications.

The Image Processing Algorithms

 +---+ +-----+ +-----+
 |(o)| ---> | ISP | --+--> | <>< | --->
 +---+ +-----+ | +-----+
 ^ |
 | | +-------+
 | \-> | Stats |
 | +-------+
 +-----+ |
 | IPA | <---------/
 +-----+

Image Processing
Algorithms (IPA) receive

statistics from the
hardware and compute

optimal image
parameters.

The pipeline handler doesn’t implement the image
processing algorithms that produce the ISP
parameters. This task is performed by the separate
IPA module. The module parses statistics produced
by the hardware and computes parameters for the
sensor and the ISP.

The Image Processing Algorithms

 ---------+
 |
 | +------------+
 Pipeline | 3A | Image |
 Handler | <----> | Processing |
 | API | Algorithms |
 | +------------+
 |
 |
 ---------+
 ^
-----|--------------------------------
 v
 +-----+ +-----+
 |#####| |#####|

IPAs are separate
modules that don’t

access kernel devices
directly. They only have
access to their pipeline
handler through the IPA

API.

IPA modules don’t have direct access to kernel
devices. Their only way to communicate with the rest
of the system is through the pipeline handler. They
receive statistics and other metadata from the
pipeline handler, and send the computed parameters
back. The parameters will be applied to the devices
by the pipeline handler itself. This means that closed-
source IPA modules can’t cheat and access
undocumented devices interfaces when nobody is
looking.

The IPA modules are implemented as shared objects
that are loaded dynamically. This allows coexistence
of IPA modules developed by the libcamera project
with third-party modules supplied by camera vendors.

The Image Processing Algorithms

 ---------+
 | ~~~~~~~~~~~~~~~~
 | { +------------+ }
 Pipeline | 3A } | Image | {
 Handler | <----> | Processing | }
 | API } | Algorithms | {
 | { +------------+ }
 | ~~~~~~~~~~~~~~~~
 |
 ---------+
 ^
-----|--------------------------------
 v
 +-----+ +-----+
 |#####| |#####|

Out-of-tree (including
closed-source) IPAs are

sandboxed in a
separate process. They

communicate with the
pipeline handler

through IPC.

We allow vendors to supply closed-source IPA
modules, but we then sandbox them in a separate
process to make sure they won’t affect system
stability, and to enforce the rule that they must not
communicate with devices directly.

This does not mean that libcamera requires closed-
source components to function. The pipeline handler
is part of the libcamera core and open-source, its
communication protocol with the IPA module is
documented, and we require vendors to provide an
open IPA module implementation that enables at
least image capture with basic image quality. The
format of the ISP parameters and statistics must also
be documented, to enable the community to write
free software IPA modules.

The Image Processing Algorithms

 ---------+
 | +--+ ~~~~~~~~~~~~~~~~~~
 | |Ma| {Un| +-------+ }
 Pipeline | 3A |rs| IPC }ma| 3A | | {
 Handler | <--> |ha| <--> {rs|<--> | IPA | }
 | API |ll| }ha| API | | {
 | |er| {ll| +-------+ }
 | +--+ ~~~~~~~~~~~~~~~~~~
 |
 ---------+
 ^
-----|--------------------------------
 v
 +-----+ +-----+
 |#####| |#####|

The IPC is handled in
core components,

transparently for both
the pipeline handler

and the IPA.

We minimize the impact of sandboxing to keep
development simple. The IPC mechanism to
communicate with the IPA module process is handled
transparently for both the pipeline handler and the
IPA module.

V4L2VideoDevice V4L2SubDevice

V4L2Format V4L2BufferCache

MediaEntityMediaDevice

V4L2 & MC

Thread EventDispatcher

Message EventNotifier

TimerSignal

Events & I/O

Request

FrameBuffer

FrameMetaData

Requests

Control

ControlValue

ControlList

Controls

CameraConfiguration PixelFormat

StreamConfiguration ImageFormats

GeometryStreamRole

Configuration

Camera
Sensor

Camera
Sensor

Info

Camera
Sensor
Factory

Camera Sensor

IPAModule

IPAProxy

IPAManager

IPAInterface

IPA & IPC

IPC

PipelineHandler

Stream

Camera

CameraData

Stream

ACMECamera

Stream

Camera

CameraData

Stream

ACMECamera

ACMEPipelineHandler

DeviceEnumeratorCameraManager

Camera Manager

CameraDeviceCameraHALManager

Android Camera HAL

... ...

ACME Algorithms
–

Proprietary

IPA Module

...

IPC

Serializer

IPA & IPC

IPA Proxy Worker - Sandboxed

...

Core

Pipeline

Adaptation

Kernel

Hardware

ov….

imx….

xgs….

mipi-ccs

Camera Sensor Drivers ACME Camera Drivers

….

….

….

….

….

….

….

….

The Helpers and Support Classes

Many helper classes
ease the
implementation of
pipeline handlers for
device vendors.

...GstLibcameraSrc

GStreamer Source

...

V4L2 Compat

To further ease development, libcamera provides a
large set of helper classes. They cover various areas
such as wrappers for the V4L2 and MC APIs, pixel
format abstraction, threading and message passing
helpers, or a logging infrastructure. These are not
areas where anyone innovates, but today everybody
ends up reinventing the same wheel in their camera
stack. With libcamera, vendors can rely on well
tested helpers and focus solely on the pipeline
handler and IPA modules.

V4L2VideoDevice V4L2SubDevice

V4L2Format V4L2BufferCache

MediaEntityMediaDevice

V4L2 & MC

Thread EventDispatcher

Message EventNotifier

TimerSignal

Events & I/O

Request

FrameBuffer

FrameMetaData

Requests

Control

ControlValue

ControlList

Controls

CameraConfiguration PixelFormat

StreamConfiguration ImageFormats

GeometryStreamRole

Configuration

Camera
Sensor

Camera
Sensor

Info

Camera
Sensor
Factory

Camera Sensor

IPAModule

IPAProxy

IPAManager

IPAInterface

IPA & IPC

IPC

PipelineHandler

Stream

Camera

CameraData

Stream

ACMECamera

Stream

Camera

CameraData

Stream

ACMECamera

ACMEPipelineHandler

DeviceEnumeratorCameraManager

Camera Manager

CameraDeviceCameraHALManager

Android Camera HAL

... ...

ACME Algorithms
–

Proprietary

IPA Module

...

IPC

Serializer

IPA & IPC

IPA Proxy Worker - Sandboxed

...

Core

Pipeline

Adaptation

Kernel

Hardware

ov….

imx….

xgs….

mipi-ccs

Camera Sensor Drivers ACME Camera Drivers

….

….

….

….

….

….

….

….

The Adaptation Layer

The adaptation layer
interface libcamera with
other APIs and
frameworks, with a
single implementation
for all supported
devices.

...GstLibcameraSrc

GStreamer Source

...

V4L2 Compat

All of this exposes cameras to applications through
the libcamera native API, but libcamera offers more.
The adaptation layer sits on top of the native API,
and interfaces libcamera with other APIs and
frameworks. Because all device-specific code is
located in the pipeline handler and IPA module, the
adaptation layer is implemented once and works on
all devices.

Android Camera HAL

 +--------------------------+
 | Android Camera Framework |
 +--------------------------+

 +--------------------------+
 | ___/ +---------+ | HW level |
 | /. .\ | JPEG | | |
 | ----- | Encoder | | - EXTERNAL | t
 | !| Cam.|! +---------+ | - LEGACY | i
 | !| HAL |! | - LIMITED | m
 | ----- ... | - FULL | e
 | | | | - LEVEL_3 |
 +--------------------------+ v

 +--------------------------+
 | libcamera |

A single Android
camera HAL module

implementation for all
devices supported by

libcamera.

In no particular order, the first component in the
adaptation layer is an Android camera HAL module.
This implements a camera provider for the Android
camera service, and gives free Android support for
any platform supported by libcamera.

And as mentioned earlier, because Chrome OS uses
the same camera HAL module API as Android,
libcamera also supports Chrome OS.

GStreamer

“libcamerasrc” offers a
multi-stream source

element for GStreamer
applications.

The second adaptation component is a GStreamer
source element named libcamerasrc. It provides
multi-stream capture in a GStreamer pipeline for any
camera supported by libcamera. It has been
successfully tested with Cheese, the GNOME
camera application.

| |
| Native V4L2 Application |
+---+
 | open() | ioctl() | mmap()
 v v v
+--+
| LD_PRELOAD=v4l2-compat.so |
| |
| open() { ioctl() { mmap() { |
| |
| } } } |
+--+
 | libcamera
 v API
+--+
| libcamera |
| |

Native V4L2 Compatibility

Native V4L2
applications are

supported through a
transparent

compatibility layer.

The last adaptation component implements V4L2
emulation. It allows existing V4L2 applications to use
libcamera without any modification, without even
being recompiled. We achieve this with a shared
object that is preloaded inside the application and
intercepts calls to the C library. When it detects that
those calls attempt to access a V4L2 device, it
redirects them to the V4L2 emulation code that
translates the calls to the libcamera API.

This is a best effort approach, as it’s impossible to
fully emulate 100% of V4L2. We have however
successfully made video calls with Firefox using this
technique.

Summary of Supported Features

Features Status

Core Multi-camera, multi-stream, per-frame control, hotplug

Supported platforms Raspberry Pi 3&4, Intel IPU3 (Kaby Lake), Rockchip
RK3399, UVC, NXP i.MX7, Allwinner A31

IPA modules Raspberry Pi, Intel IPU3
IPA module isolation with IPC (based on mojom IDL)

Adaptation layers GStreamer source element (with multi-stream),
Android camera HAL v3.3, V4L2 emulation

Tooling Camera Tuning Tool (Rasperry Pi), tracing
infrastructure and analysis script

Applications cam (command line Swiss army knife), qcam (GUI),
simple-cam (tutorial)

Documentation Extensive API documentation and high-level tutorials
and guides available

Let’s summarize the currently supported features in one
slide. We have a camera stack, it supports multiple
cameras, with multiple streams per camera, per-frame
control and hotplug. The list of supported devices is limited
but growing, with our flagship implementation being on
Raspberry Pi today. Raspberry Pi and IPU3 both have an
IPA module. The last two devices in the list have no ISP, so
only smart sensors can be used.

We’ve just seen the three components of the adaptation
layer, with GStreamer, Android and V4L2 being supported.
libcamera also includes tools, such as a camera tuning tool
for Raspberry Pi, and a tracing infrastructure for debugging.
We have three sample applications, one command-line
application that implements all supported features, one GUI
application, and one simple application used as a tutorial.
We have extensive documentation of the API with 100%
coverage, as well as high-level tutorials and guides.

Guides

Documentation compiled
from source tree, will be

integrated in the website.

The API documentation is published on the libcamera
website with nightly builds. The guides are currently
available from the source repository only, they can be
compiled to HTML, and we will publish them on the
website too.

Many developers are better at coding than writing
documentation, when they don’t viscerally hate it.
Documentation takes time, it’s an investment, but one
of the lessons that libcamera taught me is that it pays
off to enforce a good documentation policy from day
one.

New Platforms

MediaTek Pumpkin i500 (MT8385)

We are of course not sitting idle, and we’re working
on support for additional platforms. This includes an
SoC from MediaTek, used in many IoT applications.
The ISP is left out for the time being, so only smart
sensors can be used.

New Platforms

NXP i.MX8M Plus

We have also started implementing support for the
NXP i.MX8M Plus. This is the first SoC from NXP that
includes an ISP, and here we’re targetting ISP
support already.

New Platforms

NXP i.MX8M PlusPurism Librem 5

Another platform that we’ve started looking at is the
Librem 5 phone. It is based on raw sensors but
doesn’t have a hardware ISP, so we’re exploring
implementation of a software ISP running on the
GPU.

Work In Progress

Features Status

New platforms MediaTek MT8385 (with YUV sensors), NXP i.MX8M
Plus, Librem 5

Open-source IPA modules Intel IPU3, Rockchip ISP, I.MX8M Plus

Reprocessing API Work in progress in the libcamera core, Android HAL
support will follow

Controls and properties New controls and properties are continuously added
on a per-need basis

API cleanups Moving toward the API freeze for a 1.0 release, API
changes will remain backward-compatible (extensible
API design, d-pointer design pattern, …)

Language bindings Python bindings in progress

Android LIMITED and FULL CTS
compliance

Core infrastructure ready, controls and properties
(static, control and dynamic metadata) being
developed incrementally

Integration Native support in Chromium web browser available at
https://github.com/libcamera-org/chromium.

There’s more work in progress. We’re improving IPA
modules for the Intel IPU3 and Rockchip ISP, with
the goal to bring the quality on par with Raspberry Pi.
We are also extending the libcamera API with new
features and new use cases, and at the same time
we’re cleaning the API to move towards a first 1.0
release.

There’s lots of work in progress on the Android
camera HAL implementation to pass the Android
conformance test suite, and we’re also implementing
Python bindings for libcamera to support new
communities of users.

https://github.com/libcamera-org/chromium

Chromium (on MS Surface Go 2)

On the integration side, we have a prototype of native
libcamera support for the Chromium web browser.
This is a screenshot of a video call in Chromium, with
Jean-Michel on the top right using a Surface Go 2
and libcamera.

This is running an old version of libcamera, from
before we had IPU3 algorithms. Today the quality is
much better, and you wouldn’t notice libcamera is
involved. This is likely how we’ll judge libcamera’s
success in the end, we’ll have done a good job if
users don’t notice we exist.

Participation In Industry Initiatives

Another part of our work that is not very visible is our
participation in industry initiatives. We are an active
member of the Embedded Camera exploratory group
hosted by Khronos and the European Machine Vision
Association. The goal of the group is to explore
opportunities to standardize a camera API. Quite
obviously we think that libcamera is the right solution.

In parallel, we also have multiple bilateral contacts
with SoC vendors to work on libcamera adoption.

 _
+-/ \-+
| (o) |
+-----+

For
Camera
Vendors

Speaking of vendors, we’ve already seen some of the
advantages that libcamera brings, let’s now have a
look at what implementing the libcamera stack entails

V4L2VideoDevice V4L2SubDevice

V4L2Format V4L2BufferCache

MediaEntityMediaDevice

V4L2 & MC

Thread EventDispatcher

Message EventNotifier

TimerSignal

Events & I/O

Request

FrameBuffer

FrameMetaData

Requests

Control

ControlValue

ControlList

Controls

CameraConfiguration PixelFormat

StreamConfiguration ImageFormats

GeometryStreamRole

Configuration

Camera
Sensor

Camera
Sensor

Info

Camera
Sensor
Factory

Camera Sensor

IPAModule

IPAProxy

IPAManager

IPAInterface

IPA & IPC

IPC

PipelineHandler

Stream

Camera

CameraData

Stream

ACMECamera

Stream

Camera

CameraData

Stream

ACMECamera

ACMEPipelineHandler

DeviceEnumeratorCameraManager

Camera Manager

CameraDeviceCameraHALManager

Android Camera HAL

... ...

ACME Algorithms
–

Proprietary

IPA Module

...

IPC

Serializer

IPA & IPC

IPA Proxy Worker - Sandboxed

...

Core

Pipeline

Adaptation

Kernel

Hardware

/!\ Pipeline handler is
ACME-specific
development.

++ Development
support available.

ov….

imx….

xgs….

mipi-ccs

Camera Sensor Drivers ACME Camera Drivers

….

….

….

….

….

….

….

….

/!\ Implementation
changes may be
required to mainline
drivers.

++ No change on
the kernel side
architecture.

Platform Enablement

++ Standard Android
Camera HAL
Implementation.

++ GStreamer,
V4L2, ...

++ libcamera wrapper
classes reduce
custom code.

/!\ Custom API for IPA
module <-> pipeline
handler
communication.

At the bottom of the stack, we have the kernel
drivers. As long as they implement the MC API, no
change is required on the kernel side to work with
libcamera. This being said, upstreaming kernel
drivers may of course requires changes as part of the
review process with the kernel community.

Kernel APIs

We drive MC and V4L2
standardization and

extensions development
according to our needs.

libcamera has driven the development of extensions
in V4L2 and MC to fulfil the needs of the platforms we
work with. We have also encountered ambiguities
and design deficiencies in V4L2 and worked on fixing
them. The libcamera team has extensive experience
with kernel development in the media subsystem, so
we can also help vendors in this area if their
platforms have needs that are not covered yet.

On a side note, it was an interesting experience of
humility to realize that some of those problems in
V4L2 were actually in APIs that I had designed
myself. That’s another lesson learnt from libcamera,
a kernel API that only gets validated with test tools,
without a real userspace stack, will most likely have
defects.

Kernel APIs

libcamera is a
userspace framework,
not a hostile takeover

of kernel development.

We drive MC and V4L2
standardization and

extensions development
according to our needs.

libcamera is however a userspace framework, not a
hostile takeover of kernel development, so we can’t
help vendors to bypass the requirements of the
kernel community.

V4L2VideoDevice V4L2SubDevice

V4L2Format V4L2BufferCache

MediaEntityMediaDevice

V4L2 & MC

Thread EventDispatcher

Message EventNotifier

TimerSignal

Events & I/O

Request

FrameBuffer

FrameMetaData

Requests

Control

ControlValue

ControlList

Controls

CameraConfiguration PixelFormat

StreamConfiguration ImageFormats

GeometryStreamRole

Configuration

Camera
Sensor

Camera
Sensor

Info

Camera
Sensor
Factory

Camera Sensor

IPAModule

IPAProxy

IPAManager

IPAInterface

IPA & IPC

IPC

PipelineHandler

Stream

Camera

CameraData

Stream

ACMECamera

Stream

Camera

CameraData

Stream

ACMECamera

ACMEPipelineHandler

DeviceEnumeratorCameraManager

Camera Manager

CameraDeviceCameraHALManager

Android Camera HAL

... ...

ACME Algorithms
–

Proprietary

IPA Module

...

IPC

Serializer

IPA & IPC

IPA Proxy Worker - Sandboxed

...

Core

Pipeline

Adaptation

Kernel

Hardware

/!\ Pipeline handler is
ACME-specific
development.

++ Development
support available.

ov….

imx….

xgs….

mipi-ccs

Camera Sensor Drivers ACME Camera Drivers

….

….

….

….

….

….

….

….

/!\ Implementation
changes may be
required to mainline
drivers.

++ No change on
the kernel side
architecture.

Platform Enablement

++ Standard Android
Camera HAL
Implementation.

++ GStreamer,
V4L2, ...

++ libcamera wrapper
classes reduce
custom code.

/!\ Custom API for IPA
module <-> pipeline
handler
communication.

We have already seen that libcamera provides an
extensive set of helpers that help reducing
development complexity and time by avoiding the
need to reinvent the wheel. The adaptation layer is
also shared by all cameras, freeing vendors from
having to write Android or GStreamer support
manually.

The only components that need to be developed
specifically for a platform are the pipeline handler and
IPA module. This is the responsibility of the vendor.
There is extensive documentation, examples pipeline
handlers are available to provide guidance, and we
are also here to provide support.

The libcamera core
is licensed under the

LGPL v2.1 or later.

Licensing

A word on licensing, because it’s important. The
libcamera core and the adaptation layer are licensed
under the LGPL.

The libcamera core
is licensed under the

LGPL v2.1 or later.

Changes need to be published
according to the license. This

includes pipeline handlers.

Licensing

This includes the pipeline handlers, which need to be
published according to the license. The IPA modules
are excluded.

The libcamera core
is licensed under the

LGPL v2.1 or later.

Changes need to be published
according to the license. This

includes pipeline handlers.

Upstreaming is not mandatory
but highly recommended

(forks are costly to maintain).

Licensing

Only publishing the code is required to comply with
the LGPL, upstreaming it isn’t a requirement. We
however strongly recommend upstreaming. The best
results are achieved by working together, and forks
are costly to maintain.

V4L2VideoDevice V4L2SubDevice

V4L2Format V4L2BufferCache

MediaEntityMediaDevice

V4L2 & MC

Thread EventDispatcher

Message EventNotifier

TimerSignal

Events & I/O

Request

FrameBuffer

FrameMetaData

Requests

Control

ControlValue

ControlList

Controls

CameraConfiguration PixelFormat

StreamConfiguration ImageFormats

GeometryStreamRole

Configuration

Camera
Sensor

Camera
Sensor

Info

Camera
Sensor
Factory

Camera Sensor

IPAModule

IPAProxy

IPAManager

IPAInterface

IPA & IPC

IPC

PipelineHandler

Stream

Camera

CameraData

Stream

ACMECamera

Stream

Camera

CameraData

Stream

ACMECamera

ACMEPipelineHandler

DeviceEnumeratorCameraManager

Camera Manager

CameraDeviceCameraHALManager

Android Camera HAL

... ...

ACME Algorithms
–

Proprietary

IPA Module

...

IPC

Serializer

IPA & IPC

IPA Proxy Worker - Sandboxed

...

Core

Pipeline

Adaptation

Kernel

Hardware

ov….

imx….

xgs….

mipi-ccs

Camera Sensor Drivers ACME Camera Drivers

….

….

….

….

….

….

….

….

Licensing

Closed-source IPA
modules are fully

supported.

Pipeline handlers
and IPA modules
can link to third-

party libraries.

The libcamera
core, pipeline
handlers and
adaptation are
licensed under
LGPL v2.1 or later

Kernel code is
licensed under
GPL v2.0.

The kernel code is of course covered by its own
license, which is out of scope for libcamera. Let’s
also note that both the pipeline handlers and IPA
modules can link to third-party libraries if desired, as
long as the licenses are compatible. Closed-source
IPA modules are fully supported as discussed before,
even if we would like to encourage vendors to follow
the lead of Raspberry Pi and open the algorithms too.

 _
+-/ \-+
| (o) |
+-----+

An
Exciting
Future

This presentation would of course not be complete
without talking about the future of libcamera. I’ll
present here features that we envision but haven’t
started developing yet.

Future Features – Core

Features Status

Per-stream controls Concept approved, will be scheduled in the future.

Zero shutter lag Will be possible through the reprocessing API. We are
considering a high-level “use cases” library on top of
libcamera for ZSL and similar features.

Exposure bracketing HDR Similarly to ZSL, could be implemented in a “use
cases” library. A solution for device-assisted HDR
(hardware merging or software merging based on
hardware-generated metadata) is needed.

Logical camera devices (W+T
zoom, power saving, ...)

Not planned yet, missing development and test
platform.

Still image trigger sequence
(focus & flash)

Not planned yet, missing development and test
platform.

In the libcamera core, we have already thought about quite a few
interesting features. We have per-frame controls, but they’re
currently global to the camera, and we want the ability to set per-
stream controls too. This could allow setting for instance different
digital zoom factors for different streams.

We are also considering a higher-level “use cases” library on top of
libcamera, to offer features such as zero shutter lag capture or
exposure bracketing HDR. Both of these would be implemented by
capturing raw frames, pre-processing them in software, and
sending them back to the ISP for further processing.

Two other important features that will eventually make their way in
libcamera are still image triggering with focus and flash support,
and logical cameras. Logical cameras is something available in
many phones today. It’s the ability to combine multiple physical
sensors to create one logical camera. There is a variety of use
cases, such as seamlessly switching between a wide angle lens
and a tele lens when zooming, or using multiple sensors to infer
depth information.

Future Features – Devices

Features Status

Open-source IPA modules Cross-platform core library, long term work to convince
device vendors

GPU-based processing Proof of concept shader code in qcam test application,
should be leveraged to create GPU-based ISP for
platforms without a hardware ISP (Librem 5).

New devices support Ongoing discussions with SoC/system vendors,
community-driven effort on legacy devices (any
volunteer for the N900/N9 ?)

We really want to expand the number of supported
devices. I’ve already mentioned ongoing work with
the Librem 5 and a GPU-based ISP implementation,
and we have ongoing discussions with more vendors.
Support for older devices would also be great, I
would personally be very very happy to see the
OMAP3 ISP supported in libcamera, and finally bring
an open camera stack to the Nokia N900 and N9
phones. That would be a great community project I
would love to mentor, so please volunteer, don’t be
shy.

New Platforms

Paul Kocialkowski from Bootlin will talk tomorrow
about his work on a kernel driver for an ISP found in
Allwinner SoCs. He has posted the code a few weeks
ago for review, and it would be an interesting platform
to support in libcamera with a community-based
effort. If you attend his presentation, don’t hesitate to
tell him you want to volunteer.

Future Features – Android HAL

Features Status

HAL v3.5(+) On the roadmap, on hold due to lack of development
and test platform. Future Android camera HAL API
extensions will be implemented (including extensions
to the libcamera core if needed).

Zero Shutter Lag HAL-based ZSL implemented using the libcamera
reprocessing API.

We will of course continue working on the Android
camera HAL and support newer versions of the HAL
API. Support for additional features, such as zero
shutter lag, is also in scope.

Future Features – Integration

Features Status

Frameworks PipeWire, OpenCV, Qt Multimedia, Electron, <insert
your framework here>, ...

Applications Firefox, OBS, <insert your application here>, ...

Operating Systems Chrome OS, Android, Linux distributions, Buildroot,
OpenEmbedded, ...

libcamera wouldn’t be very useful if it wasn’t
integrated in frameworks, applications and
distributions. In the frameworks category, PipeWire is
particularly in scope, but so are OpenCV, Qt
Multimedia, Electron or your favourite framework.

On the application side, while Firefox already works
with libcamera using V4L2 emulation, native support
would be better. I was also very tempted to add
native libcamera support to OBS when recording this
presentation, and I hope that many other applications
will follow.

On the operating system side, we’re packaged by
Chrome OS and buildroot already, by Debian
unstable too, and work is ongoing for Fedora. This
will take more time, but being included in Android
AOSP is something I’m looking forward to.

 _
+-/ \-+
| (o) |
+-----+

libcamera

This concludes the presentation. The slides should
now be available from the Linux Foundation website.
I hope you found this interesting, and regardless of
whether a user, an application developer or a vendor,
please don’t hesitate to come and talk to us.

libcamera-devel@lists.libcamera.org
irc://chat.freenode.net/#libcamera

laurent.pinchart@ideasonboard.com

Contact

The libcamera team can be contacted through our
public mailing list and IRC channel, and you can also
contact me directly by e-mail. I am now available for
questions in the conference chat channel.

Thank you.

Thank you for attending, and I hope you will enjoy the
rest of the conference.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 98

