
Merging the V4L2 streams
support

Media Summit 2022
Dublin, Ireland

Laurent Pinchart
laurent.pinchart@ideasonboard.com

Problem Statement

V4L2 lacks support for
● CSI-2 virtual channels and data types

Conceptually, this also affects other buses that can carry multiple
streams, MIPI CSI-2 is only the most common example.

● Crossbar switches

This can be generalized as missing support for routing internal to
media entities and V4L2 subdevs.

1st – Internal Routing

i.MX8MP Hardware Architecture
i.MX 8M Plus Applications Processor Reference Manual, Rev. 1, 06/2021

Image Sensing Interface (ISI)
i.MX 8M Plus Applications Processor Reference Manual, Rev. 1, 06/2021

Image Sensing Interface (ISI)
i.MX 8M Plus Applications Processor Reference Manual, Rev. 1, 06/2021

Possible routes:

● Any CSI-2 receiver to any output,
memory input to pad 3 only

● The same CSI-2 receiver can be
routed to both outputs concurrently
(a.k.a. stream duplication)

● No two inputs can be routed to the
same output concurrently (a.k.a.
stream merging)

Crossbar Switch – Links

0

mxc_isi.0
/dev/v4l-subdev1

1

mxc_isi.0.capture
/dev/video0

0

mxc_isi.1
/dev/v4l-subdev2

1

mxc_isi.1.capture
/dev/video1

mxc_isi.output

0

csis-32e50000.csi
/dev/v4l-subdev3

1

imx296 1-001a
/dev/v4l-subdev4

0

0

csis-32e40000.csi
/dev/v4l-subdev5

1

imx290 2-001a
/dev/v4l-subdev6

0

The routing can be modelled with media
controller links.

Problems:

● No way to enumerate supported
options

● It doesn’t scale

Told You, It doesn’t scale (and that’s in mainline)

fe920000.vsp1 rpf.0 input
/dev/video0

0

fe920000.vsp1 rpf.0
/dev/v4l-subdev3

1

0 1 2 3

fe920000.vsp1 bru
/dev/v4l-subdev0

4

0

fe920000.vsp1 hsi
/dev/v4l-subdev1

1

0

fe920000.vsp1 hst
/dev/v4l-subdev2

1

0

fe920000.vsp1 sru
/dev/v4l-subdev8

1

0

fe920000.vsp1 uds.0
/dev/v4l-subdev9

1

0

fe920000.vsp1 wpf.0
/dev/v4l-subdev10

1

0

fe920000.vsp1 wpf.1
/dev/v4l-subdev11

1

0

fe920000.vsp1 wpf.2
/dev/v4l-subdev12

1

0

fe920000.vsp1 wpf.3
/dev/v4l-subdev13

1

fe920000.vsp1 rpf.1 input
/dev/video1

0

fe920000.vsp1 rpf.1
/dev/v4l-subdev4

1

fe920000.vsp1 rpf.2 input
/dev/video2

0

fe920000.vsp1 rpf.2
/dev/v4l-subdev5

1

fe920000.vsp1 rpf.3 input
/dev/video3

0

fe920000.vsp1 rpf.3
/dev/v4l-subdev6

1

fe920000.vsp1 rpf.4 input
/dev/video4

0

fe920000.vsp1 rpf.4
/dev/v4l-subdev7

1

fe920000.vsp1 wpf.0 output
/dev/video5

fe920000.vsp1 wpf.1 output
/dev/video6

fe920000.vsp1 wpf.2 output
/dev/video7

fe920000.vsp1 wpf.3 output
/dev/video8

Crossbar Switch – Internal Routing

0 1 2

crossbar
/dev/v4l-subdev0

3 4

0

mxc_isi.0
/dev/v4l-subdev1

1

0

mxc_isi.1
/dev/v4l-subdev2

1

mxc_isi.0.capture
/dev/video0

mxc_isi.1.capture
/dev/video1

mxc_isi.output

0

csis-32e50000.csi
/dev/v4l-subdev3

1

imx296 1-001a
/dev/v4l-subdev4

0

0

csis-32e40000.csi
/dev/v4l-subdev5

1

imx290 2-001a
/dev/v4l-subdev6

0 Proposed solution:

● One entity and V4L2 subdev for the
crossbar switch

● New ioctls for the V4L2 subdev
userspace API to expose internal
routing

2nd – Streams

ADAS Surround View – 8 Cameras

The world is consuming
more and more video
streams on a single
system.

Camera Long Range Connectivity

Long range digital
connectivity solutions exist
(GMSL, FPD-Link, MIPI A-
PHY, …).

MIPI CSI-2 Virtual Channels

On the receiving side, MIPI
CSI-2 is the most common
local bus, simplifying
connectivity with its
support for multiplexed
virtual channels.

MIPI CSI-2 Data Types

CSI-2 also supports
interleaving multiple data
types from one video
source. A camera sensor
can send image data,
PDAF (phase detection
auto focus) data and
embedded data over the
same link.

Streams – Device Tree

The virtual channel can be selected in
the device tree.

Problems:

● Can’t be selected at runtime
● Still supports a single virtual channel

only if specified in port node
● Doesn’t address exposing streams to

userspace

 i2c@xxxx{
 device@xx {
...
 ports {
 #address-cells = <1>;
 #size-cells = <0>;
 port@0 {
 reg = <0>;
 dev_out: endpoint {
 vc-id = <1>;
 remote-endpoint = <&csi_in0>;
 };
 };
 };
 };
 };

Streams – Multiple Links

imx477 1-001a
/dev/v4l-subdev0

0 1

0 1

unicam
/dev/v4l-subdev1

3 3

unicam-image
/dev/video0

unicam-embedded
/dev/video1

The streams can be modelled with
multiple links.

Problems:

● It doesn’t scale (CSI-2 supports 32
VCs x 64 DTs = 2048 streams)

Streams – Native Support Everywhere

Proposed solution:

● Allow links to carry multiple streams
● Expose streams to userspace on pads

(per-stream formats, selection
rectangles, …)

● Expose streams to userspace in
subdev routing tables

● Streams are not dependent on a bus
type, keep the streams to VCs/DTs
mapping internal to the kernel

vcap_csi_p0_scalar_0 output 0
/dev/video0

vcap_csi_p0_scalar_0 output 1
/dev/video1

vcap_csi_p0_scalar_0 output 2
/dev/video2

vcap_csi_p0_scalar_0 output 3
/dev/video3

0

amba_pl@0:axis_switch_csi_axis_
/dev/v4l-subdev0

1 2 3 4

0

a0190000.v_demosaic
/dev/v4l-subdev2

1

0

a01c0000.v_demosaic
/dev/v4l-subdev3

1

0

a01f0000.v_demosaic
/dev/v4l-subdev4

1

0

a0220000.v_demosaic
/dev/v4l-subdev5

1

0

a0180000.v_gamma_lut
/dev/v4l-subdev6

1

0

a01b0000.v_gamma_lut
/dev/v4l-subdev7

1

0

a01e0000.v_gamma_lut
/dev/v4l-subdev8

1

0

a0210000.v_gamma_lut
/dev/v4l-subdev9

1

0

a0000000.mipi_csi2_rx_subsystem
/dev/v4l-subdev1

1

0

a0010000.v_proc_ss
/dev/v4l-subdev10

1

0

a0020000.v_proc_ss
/dev/v4l-subdev11

1

0

a0030000.v_proc_ss
/dev/v4l-subdev12

1

0

a0100000.v_proc_ss
/dev/v4l-subdev13

1

0

a0040000.v_proc_ss
/dev/v4l-subdev14

1

0

a0080000.v_proc_ss
/dev/v4l-subdev15

1

0

a00c0000.v_proc_ss
/dev/v4l-subdev16

1

0

a0140000.v_proc_ss
/dev/v4l-subdev17

1

0 1 2 3

max9286 23-0048
/dev/v4l-subdev18

4

mars 32-0041
/dev/v4l-subdev19

0

mars 33-0042
/dev/v4l-subdev20

0

mars 32-0043
/dev/v4l-subdev21

0

mars 33-0044
/dev/v4l-subdev22

0

Proposal

V4L2 Streams API (v14)

● [PATCH v14 17/34] media: add V4L2_SUBDEV_FL_STREAMS
● [PATCH v14 18/34] media: add V4L2_SUBDEV_CAP_STREAMS
● [PATCH v14 19/34] media: Documentation: Add GS_ROUTING documentation
● [PATCH v14 20/34] media: subdev: Add [GS]_ROUTING subdev ioctls and operations
● [PATCH v14 21/34] media: subdev: add v4l2_subdev_has_pad_interdep()
● [PATCH v14 22/34] media: subdev: add v4l2_subdev_set_routing helper()
● [PATCH v14 23/34] media: subdev: Add for_each_active_route() macro
● [PATCH v14 24/34] media: Documentation: add multiplexed streams documentation
● [PATCH v14 25/34] media: subdev: add stream based configuration
● [PATCH v14 26/34] media: subdev: use streams in v4l2_subdev_link_validate()
● [PATCH v14 27/34] media: subdev: add "opposite" stream helper funcs
● [PATCH v14 28/34] media: subdev: add streams to v4l2_subdev_get_fmt() helper function
● [PATCH v14 29/34] media: subdev: add v4l2_subdev_set_routing_with_fmt() helper
● [PATCH v14 30/34] media: subdev: add v4l2_subdev_routing_validate() helper
● [PATCH v14 31/34] media: v4l2-subdev: Add v4l2_subdev_state_xlate_streams() helper
● [PATCH v14 32/34] media: v4l2-subdev: Add subdev .(enable|disable)_streams() operations
● [PATCH v14 33/34] media: v4l2-subdev: Add v4l2_subdev_s_stream_helper() function
● [PATCH v14 34/34] media: Add stream to frame descriptor

(01/34 to 16/34 already queued for v6.1)

Routing – Userspace
API

Internal Routing uAPI (1/3)

+/**
+ * struct v4l2_subdev_routing - Subdev routing information
+ *
+ * @which: configuration type (from enum v4l2_subdev_format_whence)
+ * @num_routes: the total number of routes in the routes array
+ * @routes: pointer to the routes array
+ * @reserved: drivers and applications must zero this array
+ */
+struct v4l2_subdev_routing {
+ __u32 which;
+ __u32 num_routes;
+ __u64 routes;
+ __u32 reserved[6];
+};

+#define VIDIOC_SUBDEV_G_ROUTING _IOWR('V', 38, struct v4l2_subdev_routing)
+#define VIDIOC_SUBDEV_S_ROUTING _IOWR('V', 39, struct v4l2_subdev_routing)

● The API adds support for getting and setting
routing tables.

● Setting a routing table overrides the whole
configuration (no incremental updates).

● Configurations can be tried using the usual subdev
ACTIVE/TRY states.

● Q: Do we need incremental updates ?
● Q: How does userspace enumerate possible

routes ?
● Q: More generically, how does userspace query

routing restrictions ?

Internal Routing uAPI (2/3)

+/**
+ * struct v4l2_subdev_route - A route inside a subdev
+ *
+ * @sink_pad: the sink pad index
+ * @source_pad: the source pad index
+ * @flags: route flags V4L2_SUBDEV_ROUTE_FL_*
+ * @reserved: drivers and applications must zero this array
+ */
+struct v4l2_subdev_route {
+ __u32 sink_pad;
+ __u32 source_pad;
+ __u32 flags;
+ __u32 reserved[5];
+};

● A route connects a sink pad to a source pad.

Internal Routing uAPI (3/3)

+/* The v4l2 sub-device supports routing and multiplexed streams. */
+#define V4L2_SUBDEV_CAP_STREAMS 0x00000002
+
+/*
+ * Is the route active? An active route will start when streaming is enabled
+ * on a video node.
+ */
+#define V4L2_SUBDEV_ROUTE_FL_ACTIVE _BITUL(0)
+
+/*
+ * Is the route a source endpoint? A source endpoint route refers to a stream
+ * generated by the subdevice (usually a sensor), and thus there is no
+ * sink-side endpoint for the route. The sink_pad and sink_stream fields are
+ * unused.
+ * Set by the driver.
+ */
+#define V4L2_SUBDEV_ROUTE_FL_SOURCE _BITUL(2)

● A new capability flag exposes support of the API to
userspace.

● A route can be active or inactive (exact meaning
not defined yet).

● The source of a route can be a sink pad, or an
internal source (e.g. camera sensors).

● Q: What is an inactive route ? (cfr question on
previous slide about enumeration)

● Q: Are “source routes” a good idea ?

Routing – Kernel API

Internal Routing kAPI (1/2)

+/**
+ * struct v4l2_subdev_krouting - subdev routing table
+ * @num_routes: number of routes
+ * @routes: &struct v4l2_subdev_route
+ *
+ * This structure contains the routing table for a subdev.
+ */
+struct v4l2_subdev_krouting {
+ unsigned int num_routes;
+ struct v4l2_subdev_route *routes;
+};

 struct v4l2_subdev_state {
 /* lock for the struct v4l2_subdev_state fields */
 struct mutex _lock;
 struct mutex *lock;
 struct v4l2_subdev_pad_config *pads;
+ struct v4l2_subdev_krouting routing;
 };

● Internal structure to model routing.
● Integrated in v4l2_subdev_state. The whole

routing API is heavily based on the subdev state,
and requires drivers to use the recent active
subdev state API.

Internal Routing kAPI (2/2)

 /**
 * struct v4l2_subdev_pad_ops - v4l2-subdev pad level operations
 *
 * [...]
+ * @set_routing: enable or disable data connection routes described in the
+ * subdevice routing table.
 * [...]
 */
 struct v4l2_subdev_pad_ops {
 [...]
+ int (*set_routing)(struct v4l2_subdev *sd,
+ struct v4l2_subdev_state *state,
+ enum v4l2_subdev_format_whence which,
+ struct v4l2_subdev_krouting *route);
 [...]
 };

● New subdev pad operation to set routing.
● Subdev drivers must store the routing table in the

state.
● The GET ioctl is fully implemented by the V4L2

subdev core, retrieving the routing table from the
state.

Routing – Kernel
Helpers

Internal Routing Helpers (1/5)

+/**
+ * for_each_active_route - iterate on all active routes of a routing table
+ * @routing: The routing table
+ * @route: The route iterator
+ */
+#define for_each_active_route(routing, route) \
+ for ((route) = NULL; \
+ ((route) = __v4l2_subdev_next_active_route((routing), (route)));)

● Helper to iterate over active routes in a routing
table.

Internal Routing Helpers (2/5)

+enum v4l2_subdev_routing_restriction {
+ V4L2_SUBDEV_ROUTING_NO_1_TO_N = BIT(0),
+ V4L2_SUBDEV_ROUTING_NO_N_TO_1 = BIT(1),
+ V4L2_SUBDEV_ROUTING_NO_STREAM_MIX = BIT(2),
+};
+
+/**
+ * v4l2_subdev_routing_validate() - Verify that routes comply with driver constraints
+ * @sd: The subdevice
+ * @routing: Routing to verify
+ * @disallow: Restrictions on routes
+ *
+ * This verifies that the given routing complies with the @disallow constraints.
+ *
+ * Returns 0 on success, error value otherwise.
+ */
+int v4l2_subdev_routing_validate(struct v4l2_subdev *sd,
+ const struct v4l2_subdev_krouting *routing,
+ enum v4l2_subdev_routing_restriction disallow);

● Helper to validate a routing table against common
constraints: stream duplication (1:N routing),
stream merging (N:1 routing), stream mixing
(streams coming on the same pad can be routed
to different pads).

Internal Routing Helpers (3/5)

+ /**
+ * v4l2_subdev_set_routing() - Set given routing to subdev state
+ * @sd: The subdevice
+ * @state: The subdevice state
+ * @routing: Routing that will be copied to subdev state
+ *
+ * This will release old routing table (if any) from the state, allocate
+ * enough space for the given routing, and copy the routing.
+ *
+ * This can be used from the subdev driver's set_routing op, after validating
+ * the routing.
+ */
+int v4l2_subdev_set_routing(struct v4l2_subdev *sd,
+ struct v4l2_subdev_state *state,
+ const struct v4l2_subdev_krouting *routing);

● Helper to store a routing table in the state (handles
memory allocation).

Internal Routing Helpers (4/5)

+/**
+ * v4l2_subdev_set_routing_with_fmt() - Set given routing and format to subdev
+ * state
+ * @sd: The subdevice
+ * @state: The subdevice state
+ * @routing: Routing that will be copied to subdev state
+ * @fmt: Format used to initialize all the streams
+ *
+ * This is the same as v4l2_subdev_set_routing, but additionally initializes
+ * all the streams using the given format.
+ */
+int v4l2_subdev_set_routing_with_fmt(struct v4l2_subdev *sd,
+ struct v4l2_subdev_state *state,
+ struct v4l2_subdev_krouting *routing,
+ const struct v4l2_mbus_framefmt *fmt);

● Helper to store a routing table in the state and
reset all formats on the corresponding pads (fmt is
assumed to be valid).

● Q: How about selection rectangles ? Do we need
better helpers ?

Internal Routing Helpers (5/5)

+/**
+ * v4l2_subdev_routing_find_opposite_end() - Find the opposite stream
+ * @routing: routing used to find the opposite side
+ * @pad: pad id
+ * @stream: stream id
+ * @other_pad: pointer used to return the opposite pad
+ * @other_stream: pointer used to return the opposite stream
+ *
+ * This function uses the routing table to find the pad + stream which is
+ * opposite the given pad + stream.
+ *
+ * @other_pad and/or @other_stream can be NULL if the caller does not need the
+ * value.
+ *
+ * Returns 0 on success, or -EINVAL if no matching route is found.
+ */
+int v4l2_subdev_routing_find_opposite_end(const struct v4l2_subdev_krouting *routing,
+ u32 pad, u32 stream, u32 *other_pad,
+ u32 *other_stream);

● Helper to follow streams inside a subdev.

Streams – Userspace
API

Streams uAPI (1/5)

 Pipelines and media streams
 ^^^^^^^^^^^^^^^^^^^^^^^^^^^

+A media stream is a stream of pixels or metadata originating from one or more
+source devices (such as a sensors) and flowing through media entity pads
+towards the final sinks. The stream can be modified on the route by the
+devices (e.g. scaling or pixel format conversions), or it can be split into
+multiple branches, or multiple branches can be merged.
+
+A media pipeline is a set of media streams which are interdependent. This
+interdependency can be caused by the hardware (e.g. configuration of a second
+stream cannot be changed if the first stream has been enabled) or by the driver
+due to the software design. Most commonly a media pipeline consists of a single
+stream which does not branch.

● In the API, streams are identified by an arbitrary
numerical ID. The IDs are link-local, the same
stream ID on the source and sink pads of a link
refer to the same stream.

● Streams are routed in subdevs using the routing
API. The stream ID will typically change when the
stream goes through a subdev (no graph-global
ID).

Streams uAPI (2/5)

 /**
 * struct v4l2_subdev_route - A route inside a subdev
 *
 * @sink_pad: the sink pad index
+ * @sink_stream: the sink stream identifier
 * @source_pad: the source pad index
+ * @source_stream: the source stream identifier
 * @flags: route flags V4L2_SUBDEV_ROUTE_FL_*
 * @reserved: drivers and applications must zero this array
 */
 struct v4l2_subdev_route {
 __u32 sink_pad;
+ __u32 sink_stream;
 __u32 source_pad;
+ __u32 source_stream;
 __u32 flags;
 __u32 reserved[5];
 };

● Streams are created by subdev internal routes.
When a route is created with sink and source
stream IDs, those streams are implicitly created on
the corresponding pads.

● If a subdev doesn’t support the internal routing
API, all pads have an implicit stream with ID 0.

● Q: Do we need to support dynamic routing
changes (while streaming) ?

Streams uAPI (3/5)

 /**
 * struct v4l2_subdev_format - Pad-level media bus format
 * @which: format type (from enum v4l2_subdev_format_whence)
 * @pad: pad number, as reported by the media API
 * @format: media bus format (format code and frame size)
+ * @stream: stream number, defined in subdev routing
 * @reserved: drivers and applications must zero this array
 */
 struct v4l2_subdev_format {
 __u32 which;
 __u32 pad;
 struct v4l2_mbus_framefmt format;
- __u32 reserved[8];
+ __u32 stream;
+ __u32 reserved[7];
 };

+ v4l2_subdev_crop, v4l2_subdev_mbus_code_enum, v4l2_subdev_frame_size_enum, v4l2_subdev_frame_interval,
v4l2_subdev_frame_interval_enum and v4l2_subdev_selection

● Streams are exposed to userspace in pad
configuration. Pad formats become per-stream.

● Formats are reset when routing is modified.

● Q: Should we skip v4l2_subdev_crop (legacy) ?
How about v4l2_subdev_frame_interval (no
existing use case) ?

● Q: Should we avoid resetting formats (e.g. to
support dynamic routing changes) ?

Streams uAPI (4/5)

● Q: Extending the subdev configuration model
(Documentation/userspace-api/media/v4l/dev-
subdev.rst) for streams hasn’t been considered
yet. How do we avoid creating a horribly complex
monster ?

pad 0 (sink)

pad 2 (source)

sink media
bus format

sink compose
selection (scaling)

source media
bus format

sink compose
bounds selection

pad 1 (sink) pad 3 (source)

sink
crop
selection

source
crop
selection

Streams uAPI (5/5)

● A simplified version of the generic subdev model is
used with camera sensors.

● The routing table is used to control transmission of
embedded data by enabling or disabling the
corresponding route.

● Q: Is this the best option ?
● Q: Can it support control of ED when streaming ?
● Q: How does this integrate with other sensor

features ?
● Q: Do we need a new model for camera sensors

(in-kernel, userspace, or both) ?

ov1063x 01-001a
/dev/v4l-subdev2

Pad 0, Streams 0 & 1

struct v4l2_subdev_route routes[] = {
 {
 .source_pad = 0,
 .source_stream = 0,
 .flags = V4L2_SUBDEV_ROUTE_FL_SOURCE
 | V4L2_SUBDEV_ROUTE_FL_ACTIVE,
 },
 {
 .source_pad = 0,
 .source_stream = 1,
 .flags = V4L2_SUBDEV_ROUTE_FL_SOURCE
 /* | V4L2_SUBDEV_ROUTE_FL_ACTIVE */,
 }
};

Pixel
Array Process

Streams – Kernel API

Streams kAPI (1/4)

 /**
 * struct media_entity_operations - Media entity operations
 [...]
+ * @has_pad_interdep: Return whether two pads of the entity are
+ * interdependent. If two pads are interdependent they are
+ * part of the same pipeline and enabling one of the pads
+ * means that the other pad will become "locked" and
+ * doesn't allow configuration changes. pad0 and pad1 are
+ * guaranteed to not both be sinks or sources.
+ * Optional: If the operation isn't implemented all pads
+ * will be considered as interdependent.
 [...]
 */
 struct media_entity_operations {
 [...]
+ bool (*has_pad_interdep)(struct media_entity *entity, unsigned int pad0,
+ unsigned int pad1);
 };

● Stream-aware .has_pad_interdep() operation (was
.has_route() in previous versions) exposes internal
routing to the media controller framework, used by
media pipeline helpers to walk pipelines based on
streams.

Streams kAPI (2/4)

+/**
+ * struct v4l2_subdev_stream_config - Used for storing stream configuration.
+ * @pad: pad number
+ * @stream: stream number
+ * @enabled: has the stream been enabled with v4l2_subdev_enable_stream()
+ * @fmt: &struct v4l2_mbus_framefmt
+ * @crop: &struct v4l2_rect to be used for crop
+ * @compose: &struct v4l2_rect to be used for compose
+ *
+ * This structure stores configuration for a stream.
+ */
+struct v4l2_subdev_stream_config {
+ u32 pad;
+ u32 stream;
+ bool enabled;
+ struct v4l2_mbus_framefmt fmt;
+ struct v4l2_rect crop;
+ struct v4l2_rect compose;
+};

● Structure to store per-stream pad configuration.

Streams kAPI (3/4)

+/**
+ * struct v4l2_subdev_stream_configs - A collection of stream configs.
+ *
+ * @num_configs: number of entries in @config.
+ * @configs: an array of &struct v4l2_subdev_stream_configs.
+ */
+struct v4l2_subdev_stream_configs {
+ u32 num_configs;
+ struct v4l2_subdev_stream_config *configs;
+};

 struct v4l2_subdev_state {
 /* lock for the struct v4l2_subdev_state fields */
 struct mutex _lock;
 struct mutex *lock;
 struct v4l2_subdev_pad_config *pads;
 struct v4l2_subdev_krouting routing;
+ struct v4l2_subdev_stream_configs stream_configs;
 };

● Integrated in v4l2_subdev_state. The whole
streams API is heavily based on the subdev state,
and requires drivers to use the recent active
subdev state API.

Streams kAPI (4/4)

 /**
 * struct v4l2_subdev_pad_ops - v4l2-subdev pad level operations
 *
 * [...]
+ * @enable_streams: Enable the streams defined in streams_mask on the given
+ * source pad. Subdevs that implement this operation must use the active
+ * state management provided by the subdev core (enabled through a call to
+ * v4l2_subdev_init_finalize() at initialization time). Do not call
+ * directly, use v4l2_subdev_enable_streams() instead.
+ *
+ * @disable_streams: Disable the streams defined in streams_mask on the given
+ * source pad. Subdevs that implement this operation must use the active
+ * state management provided by the subdev core (enabled through a call to
+ * v4l2_subdev_init_finalize() at initialization time). Do not call
+ * directly, use v4l2_subdev_disable_streams() instead.
 * [...]
 */
 struct v4l2_subdev_pad_ops {
 [...]
+ int (*enable_streams)(struct v4l2_subdev *sd,
+ struct v4l2_subdev_state *state, u32 pad,
+ u64 streams_mask);
+ int (*disable_streams)(struct v4l2_subdev *sd,
+ struct v4l2_subdev_state *state, u32 pad,
+ u64 streams_mask);
 [...]
 };

● New subdev pad operation to enable and disable
streams.

● Replaces .s_stream(), helpers available to enable
interop between .s_stream() and new operations in
both directions.

Streams – Kernel
Helpers

Streams Helpers (1/6)

+/**
+ * v4l2_subdev_has_pad_interdep - MC has_pad_interdep implementation for subdevs
+ *
+ * @entity: pointer to &struct media_entity
+ * @pad0: pad number for the first pad
+ * @pad1: pad number for the second pad
+ *
+ * This function is an implementation of the media_entity_operations.has_pad_interdep
+ * operation for subdevs that implement the multiplexed streams API (as
+ * indicated by the V4L2_SUBDEV_FL_STREAMS subdev flag).
+ *
+ * It considers two pads interdependent if there is an active route between pad0
+ * and pad1.
+ */
+bool v4l2_subdev_has_pad_interdep(struct media_entity *entity,
+ unsigned int pad0, unsigned int pad1);

● Helper to implement .has_pad_interdep() based
on active routing table.

Streams Helpers (2/6)

+/**
+ * v4l2_subdev_state_get_stream_format() - Get pointer to a stream format
+ * @state: subdevice state
+ * @pad: pad id
+ * @stream: stream id
+ *
+ * This returns a pointer to &struct v4l2_mbus_framefmt for the given pad +
+ * stream in the subdev state.
+ *
+ * If the state does not contain the given pad + stream, NULL is returned.
+ */+struct v4l2_mbus_framefmt *
+v4l2_subdev_state_get_stream_format(struct v4l2_subdev_state *state,
+ unsigned int pad, u32 stream);

+v4l2_subdev_state_get_stream_crop(), v4l2_subdev_state_get_stream_compose()

● Helpers to retrieve stream format, crop and
selection rectangle pointers from the subdev state.

Streams Helpers (3/6)

+/**
+ * v4l2_subdev_state_get_opposite_stream_format() - Get pointer to opposite
+ * stream format
+ * @state: subdevice state
+ * @pad: pad id
+ * @stream: stream id
+ *
+ * This returns a pointer to &struct v4l2_mbus_framefmt for the pad + stream
+ * that is opposite the given pad + stream in the subdev state.
+ *
+ * If the state does not contain the given pad + stream, NULL is returned.
+ */
+struct v4l2_mbus_framefmt *
+v4l2_subdev_state_get_opposite_stream_format(struct v4l2_subdev_state *state,
+ u32 pad, u32 stream);

● Helper to retrieve stream format on the other end
of a stream within a subdev.

Streams Helpers (4/6)

+/**
+ * v4l2_subdev_state_xlate_streams() - Translate streams from one pad to another
+ *
+ * @state: Subdevice state
+ * @pad0: The first pad
+ * @pad1: The second pad
+ * @streams: Streams bitmask on the first pad
+ *
+ * Streams on sink pads of a subdev are routed to source pads as expressed in
+ * the subdev state routing table. Stream numbers don't necessarily match on
+ * the sink and source side of a route. This function translates stream numbers
+ * on @pad0, expressed as a bitmask in @streams, to the corresponding streams
+ * on @pad1 using the routing table from the @state. It returns the stream mask
+ * on @pad1, and updates @streams with the streams that have been found in the
+ * routing table.
+ *
+ * @pad0 and @pad1 must be a sink and a source, in any order.
+ *
+ * Return: The bitmask of streams of @pad1 that are routed to @streams on @pad0.
+ */
+u64 v4l2_subdev_state_xlate_streams(const struct v4l2_subdev_state *state,
+ u32 pad0, u32 pad1, u64 *streams);

● Helper to follow streams within a subdev.

Streams Helpers (5/6)

+/**
+ * v4l2_subdev_s_stream_helper() - Helper to implement the subdev s_stream
+ * operation using enable_streams and disable_streams
+ * @sd: The subdevice
+ * @enable: Enable or disable streaming
+ *
+ * Subdevice drivers that implement the streams-aware
+ * &v4l2_subdev_pad_ops.enable_streams and &v4l2_subdev_pad_ops.disable_streams
+ * operations can use this helper to implement the legacy
+ * &v4l2_subdev_video_ops.s_stream operation.
+ *
+ * This helper can only be used by subdevs that have a single source pad.
+ *
+ * Return: 0 on success, or a negative error code otherwise.
+ */
+int v4l2_subdev_s_stream_helper(struct v4l2_subdev *sd, int enable);

● Helper to implement legacy .s_stream() operation
based on the new .enable_stream()
and .disable_stream().

● This allows usage of subdevs that use the new API
with drivers that call the legacy .s_stream()
operation.

Streams Helpers (6/6)

+/**
+ * v4l2_subdev_enable_streams() - Enable streams on a pad
+ * @sd: The subdevice
+ * @pad: The pad
+ * @streams_mask: Bitmask of streams to enable
+ *
+ * This function enables streams on a source @pad of a subdevice. The pad is
+ * identified by its index, while the streams are identified by the
+ * @streams_mask bitmask. This allows enabling multiple streams on a pad at
+ * once.
+ *
+ * Enabling a stream that is already enabled isn't allowed. If @streams_mask
+ * contains an already enabled stream, this function returns -EALREADY without
+ * performing any operation.
+ *
+ * Per-stream enable is only available for subdevs that implement the
+ * .enable_streams() and .disable_streams() operations. For other subdevs, this
+ * function implements a best-effort compatibility by calling the .s_stream()
+ * operation, limited to subdevs that have a single source pad.
+ *
+ * Return:
+ * * 0: Success
+ * * -EALREADY: One of the streams in streams_mask is already enabled
+ * * -EINVAL: The pad index is invalid, or doesn't correspond to a source pad
+ * * -EOPNOTSUPP: Falling back to the legacy .s_stream() operation is
+ * impossible because the subdev has multiple source pads
+ */
+int v4l2_subdev_enable_streams(struct v4l2_subdev *sd, u32 pad,
+ u64 streams_mask);

+ v4l2_subdev_disable_streams()

● Helpers that wrap .enable_stream() and
disable_stream(), falling back to legacy .s_stream().

● This is meant to replace direct calls to subdev
operations when enabling or disabling streams, to
allow interoperability between old and new subdev
drivers.

laurent.pinchart@ideasonboard.com

Contact

? !

Go raibh maith
agat

